19 条题解

  • 11
    @ 2023-2-1 10:19:19

    鬼子进村

    #include <bits/stdc++.h>
    #define int long long
    using namespace std;
    const int MAXN = 50000;
    int n, m;
    stack<int> sta;
    bool flag[MAXN + 5];
    // 树状数组
    int t[MAXN + 5];
    int lowbit(int x)
    {
        return x & (-x);
    }
    // 第x个数加k
    void update(int x, int k)
    {
        for (int i = x; i <= n; i += lowbit(i))
            t[i] += k;
    }
    // 返回前x个数的和
    int query(int x)
    {
        int res = 0;
        for (int i = x; i >= 1; i -= lowbit(i))
            res += t[i];
        return res;
    }
    int getPos(int now)
    {
        if (now == 0)
            return 0;
        // 二分查找第一个前缀和大于等于now的位置
        // 可优化(详见:http://wiki.33dai.cn/ds/fenwick/#tricks)
        int l = 1;
        int r = n;
        int ans = n + 1;
        while (l <= r)
        {
            int mid = (l + r) / 2;
            if (query(mid) >= now)
            {
                ans = mid;
                r = mid - 1;
            }
            else
                l = mid + 1;
        }
        return ans;
    }
    signed main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        cin >> n >> m;
        while (m--)
        {
            char op;
            int x;
            cin >> op;
            if (op == 'D')
            {
                cin >> x;
                // 摧毁 x
                assert(!flag[x]); // 如果x已经被摧毁了,会报RE
                flag[x] = true;
                sta.push(x);
                update(x, 1);
            }
            else if (op == 'Q')
            {
                cin >> x;
                if (flag[x])
                {
                    cout << 0 << "\n";
                    continue;
                }
                int now = query(x);
                int l = getPos(now);
                int r = getPos(now + 1);
                cout << r - l - 1 << "\n";
            }
            else if (op == 'R')
            {
                x = sta.top();
                sta.pop();
                flag[x] = false;
                update(x, -1);
            }
        }
        return 0;
    }
    
    • 9
      @ 2023-2-2 8:28:04

      P3919 【模板】可持久化线段树 1(可持久化数组)

      #include <bits/stdc++.h>
      using namespace std;
      const int MAXN = 1000000;
      const int MAXM = 1000000;
      struct Node
      {
          int val;
          int lc, rc; //左孩子节点编号、右孩子节点编号
      } t[4 * MAXN + MAXM * 35 + 5];
      int cnt = 0;      //节点数量,节点编号从1开始
      int rt[MAXM + 5]; //每个版本的根节点在哪儿
      int n, m, a[MAXN + 5];
      //对区间 l, r 建树,返回建好后的树的根节点编号
      int build(int l, int r)
      {
          int root = ++cnt;
          if (l == r)
          {
              t[root].val = a[l];
              return root;
          }
          int mid = (l + r) / 2;
          t[root].lc = build(l, mid);
          t[root].rc = build(mid + 1, r);
          return root;
      }
      //在now这个子树(对应区间[l,r])中找到loc位置的值
      int query(int now, int l, int r, int loc)
      {
          if (l == r)
              return t[now].val;
          int mid = (l + r) / 2;
          if (loc <= mid)
              return query(t[now].lc, l, mid, loc);
          else
              return query(t[now].rc, mid + 1, r, loc);
      }
      //在基于v这个子树(对应区间[l,r])的
      //now树(对应区间[l,r])中 把loc位置改成val
      void update(int v, int now, int l, int r, int loc, int val)
      {
          if (l == r)
          {
              t[now].val = val;
              return;
          }
          t[now].lc = t[v].lc;
          t[now].rc = t[v].rc;
          int mid = (l + r) / 2;
          if (loc <= mid)
          {
              t[now].lc = ++cnt;
              update(t[v].lc, t[now].lc, l, mid, loc, val);
          }
          else
          {
              t[now].rc = ++cnt;
              update(t[v].rc, t[now].rc, mid + 1, r, loc, val);
          }
      }
      int main()
      {
          ios::sync_with_stdio(false);
          cin.tie(0);
          cin >> n >> m;
          for (int i = 1; i <= n; i++)
              cin >> a[i];
          rt[0] = build(1, n);
          for (int i = 1; i <= m; i++)
          {
              int v, op, loc, value;
              cin >> v >> op >> loc;
              if (op == 1)
              {
                  cin >> value;
                  rt[i] = ++cnt;
                  update(rt[v], rt[i], 1, n, loc, value);
              }
              else
              {
                  rt[i] = ++cnt;
                  t[rt[i]].lc = t[rt[v]].lc;
                  t[rt[i]].rc = t[rt[v]].rc;
                  cout << query(rt[i], 1, n, loc) << "\n";
              }
          }
          return 0;
      }
      
      • 3
        @ 2023-2-2 9:23:56

        P1502 窗口的星星

        #include <bits/stdc++.h>
        #define int long long
        using namespace std;
        int T;
        int n, W, H;
        const int MAXN = 10000 + 4;
        struct SQ
        {
            int x, y, xx, yy, val;
        } a[MAXN];          //矩形
        int tempTot;        //离散化点数
        int temp[MAXN * 2]; //每个矩形两个y
        struct Line
        {
            int x, l, r, val;
        };
        int bTot;
        Line b[MAXN * 2]; //边,一个矩形两条边
        bool cmp(Line a, Line b)
        {
            if (a.x != b.x)
                return a.x < b.x;
            return a.val > b.val;
        }
        struct SegTree
        {
            int maxX[MAXN * 2 * 4], lazy[MAXN * 2 * 4];
            void up(int now, int l, int r)
            {
                if (l == r)
                    return;
                maxX[now] = max(maxX[now * 2], maxX[now * 2 + 1]);
            }
            void down(int now, int l, int r)
            {
                maxX[now * 2] += lazy[now];
                maxX[now * 2 + 1] += lazy[now];
                lazy[now * 2] += lazy[now];
                lazy[now * 2 + 1] += lazy[now];
                lazy[now] = 0;
            }
            void build(int now, int l, int r)
            {
                maxX[now] = 0;
                lazy[now] = 0;
                if (l == r)
                    return;
                int mid = (l + r) / 2;
                build(now * 2, l, mid);
                build(now * 2 + 1, mid + 1, r);
                up(now, l, r);
            }
            void add(int now, int l, int r, int x, int y, int z)
            {
                if (x <= l && r <= y)
                {
                    maxX[now] += z;
                    lazy[now] += z;
                    return;
                }
                down(now, l, r);
                int mid = (l + r) / 2;
                if (x <= mid)
                    add(now * 2, l, mid, x, y, z);
                if (y > mid)
                    add(now * 2 + 1, mid + 1, r, x, y, z);
                up(now, l, r);
            }
        } tree;
        signed main()
        {
            ios::sync_with_stdio(false);
            cin.tie(0);
            cin >> T;
            while (T--)
            {
                cin >> n >> H >> W;
                tempTot = 0;
                for (int i = 1; i <= n; i++)
                {
                    int x, y, l;
                    cin >> x >> y >> l;
                    a[i].x = x;
                    a[i].y = y;
                    a[i].xx = x + H - 1;
                    a[i].yy = y + W - 1;
                    a[i].val = l;
                    temp[++tempTot] = a[i].y;
                    temp[++tempTot] = a[i].yy;
                }
                sort(temp + 1, temp + tempTot + 1);
                tempTot = unique(temp + 1, temp + tempTot + 1) - temp - 1;
                bTot = 0;
                for (int i = 1; i <= n; i++)
                {
                    a[i].y = lower_bound(temp + 1, temp + tempTot + 1, a[i].y) - temp;
                    a[i].yy = lower_bound(temp + 1, temp + tempTot + 1, a[i].yy) - temp;
                    b[++bTot] = (Line){a[i].x, a[i].y, a[i].yy, a[i].val};
                    b[++bTot] = (Line){a[i].xx, a[i].y, a[i].yy, -a[i].val};
                }
                sort(b + 1, b + bTot + 1, cmp);
                int ans = 0;
                tree.build(1, 1, tempTot);
                for (int i = 1; i <= bTot; i++)
                {
                    ans = max(ans, tree.maxX[1]);
                    tree.add(1, 1, tempTot, b[i].l, b[i].r, b[i].val);
                }
                cout << ans << "\n";
            }
            return 0;
        }
        
        • 2
          @ 2023-2-3 8:28:30

          配对统计

          @ 的代码

          #include <bits/stdc++.h>
          using namespace std;
          #define int long long
          const int MAXN = 300005;
          int t[4 * MAXN];
          int n, nn, m, js = 1;
          struct ANS
          {
              int id, l, r;
          } ans[MAXN]; // id,l,r
          bool cmp_ans(const ANS &a, const ANS &b)
          {
              if (a.r != b.r)
                  return a.r < b.r;
              else
                  return a.l < b.l;
          }
          struct edge
          {
              int id, val;
          } a[MAXN]; // id,val
          bool cmp_a(const edge &a, const edge &b)
          {
              if (a.val != b.val)
                  return a.val < b.val;
              else
                  return a.id < b.id;
          }
          struct GOOD
          {
              int l, r;
              void add_GOOD(int a, int b)
              {
                  l = min(a, b);
                  r = max(a, b);
              }
          } good[MAXN * 2]; // l,r
          bool cmp_good(const GOOD &a, const GOOD &b)
          {
              if (a.r != b.r)
                  return a.r < b.r;
              else
                  return a.l < b.l;
          }
          int query(int now, int l, int r, int x, int y) // l、r线段树区间,x、y目标
          {
              if (x <= l && r <= y)
                  return t[now];
              else
              {
                  int mid = (l + r) / 2;
                  int res = 0;
                  if (x <= mid)
                      res += query(now * 2, l, mid, x, y);
                  if (y > mid)
                      res += query(now * 2 + 1, mid + 1, r, x, y);
                  return res;
              }
          }
          void update(int now, int l, int r, int x)
          {
              if (l == r)
              {
                  t[now]++;
                  return;
              }
              else
              {
                  int mid = (l + r) / 2;
                  if (x <= mid)
                      update(now * 2, l, mid, x);
                  else
                      update(now * 2 + 1, mid + 1, r, x);
                  t[now] = t[now * 2] + t[now * 2 + 1];
              }
          }
          signed main()
          {
              ios::sync_with_stdio(false);
              cin.tie(0);
              cin >> n >> m;
              for (int i = 1; i <= n; i++)
              {
                  cin >> a[i].val;
                  a[i].id = i;
              }
              sort(a + 1, a + 1 + n, cmp_a);
              for (int i = 2; i < n; i++)
              {
                  int left = a[i].val - a[i - 1].val;
                  int right = a[i + 1].val - a[i].val;
                  if (left < right)
                  {
                      good[++js].add_GOOD(a[i].id, a[i - 1].id); // 左边差更小,只有左边的一对
                  }
                  else if (left == right)
                  {
                      good[++js].add_GOOD(a[i].id, a[i - 1].id);
                      good[++js].add_GOOD(a[i].id, a[i + 1].id);
                  }
                  // 两边差更小,有两对
                  else
                  {
                      good[++js].add_GOOD(a[i].id, a[i + 1].id); // 右边差更小,只有右边的一对
                  }
              }
              assert(n == 1);
              if(n == 1)
              {
                  cout << 0 << "\n";
                  return 0;
              }
              if (n != 1)
              {
                  good[1].add_GOOD(a[1].id, a[2].id);        // 首位
                  good[++js].add_GOOD(a[n].id, a[n - 1].id); // 末尾
              }
              sort(good + 1, good + 1 + js, cmp_good);
              //------------------------------------
              for (int i = 1; i <= m; i++)
              {
                  int l, r;
                  cin >> l >> r; // l、r区间和
                  ans[i] = ((ANS){i, l, r});
              }
              sort(ans + 1, ans + 1 + m, cmp_ans);
              int da = 0;
              for (int i = 1, j = 1; i <= m; i++)
              {
                  int id = ans[i].id;
                  int l = ans[i].l;
                  int r = ans[i].r;
                  // cout << "r:" << r << endl;
                  while (j <= js && good[j].r <= r)
                  {
                      // cout << "i:" << i << "  j:" << j << "  good[j].r" << good[j].r << endl;
                      update(1, 1, n, good[j].l);
                      j++;
                  }
                  // cout << "id" << id << ":" << query(1, 1, n, l, r) << endl;
                  da += query(1, 1, n, l, r) * id;
              }
              cout << da;
              return 0;
          }
          ``
          • 2
            @ 2023-2-1 9:53:04

            P1637 三元上升子序列

            #include <bits/stdc++.h>
            #define int long long
            using namespace std;
            const int MAXN = 30000;
            const int MAXAI = 100000;
            int n;
            int a[MAXN + 5];
            int dp[MAXN + 5][5]; // dp[i][j] a[i]结尾的长度为j的LIS数量
            // 树状数组:query[x]:k=1~i-1 a[k] 小于等于 x 的 dp[k][j-1] 之和  
            int t[MAXAI + 5];
            int lowbit(int x)
            {
                return x & (-x);
            }
            // 第x个数加k
            void update(int x, int k)
            {
                for (int i = x; i <= MAXAI; i += lowbit(i))
                    t[i] += k;
            }
            // 返回前x个数的和
            int query(int x)
            {
                int res = 0;
                for (int i = x; i >= 1; i -= lowbit(i))
                    res += t[i];
                return res;
            }
            signed main()
            {
                ios::sync_with_stdio(false);
                cin.tie(0);
                cin >> n;
                for (int i = 1; i <= n; i++)
                {
                    cin >> a[i];
                    dp[i][1] = 1;
                }
                /*
                暴力枚举做法
                for (int j = 2; j <= 3; j++)
                {
                    for (int i = 1; i <= n; i++)
                    {
                        dp[i][j] = 0;
                        for (int k = 1; k < i; k++)
                            if (a[k] < a[i])
                                dp[i][j] += dp[k][j - 1];
                    }
                }
                */
                for (int j = 2; j <= 3; j++)
                {
                    // 树状数组初始化(可以用时间戳优化,见:http://wiki.33dai.cn/ds/fenwick/#tricks)
                    for (int i = 1; i <= MAXAI; i++)
                        t[i] = 0;
                    for (int i = 1; i <= n; i++)
                    {
                        dp[i][j] = query(a[i] - 1);
                        update(a[i], dp[i][j - 1]);
                    }
                }
                int ans = 0;
                for (int i = 1; i <= n; i++)
                    ans += dp[i][3];
                cout << ans << "\n";
                return 0;
            }
            
            • 2
              @ 2023-1-31 14:18:47

              区间

              使用封装了的线段树完成的例子

              #include <bits/stdc++.h>
              using namespace std;
              const int MAXN = 1000000 + 5;
              int n, m;
              struct Seg
              {
                  int l, r, len;
              };
              bool cmp(Seg a, Seg b)
              {
                  return a.len < b.len;
              }
              Seg a[MAXN / 2];
              vector<int> temp;
              struct SegTree
              {
                  int maxX[4 * MAXN], lazy[4 * MAXN];
                  void up(int now)
                  {
                      maxX[now] = max(maxX[now * 2], maxX[now * 2 + 1]);
                  }
                  void down(int now, int l, int r)
                  {
                      if (l == r)
                          return;
                      int mid = (l + r) / 2;
                      maxX[now * 2] = maxX[now * 2] + lazy[now];
                      maxX[now * 2 + 1] = maxX[now * 2 + 1] + lazy[now];
                      lazy[now * 2] += lazy[now];
                      lazy[now * 2 + 1] += lazy[now];
                      lazy[now] = 0;
                  }
                  void build(int now, int l, int r)
                  {
                      lazy[now] = 0;
                      if (l == r)
                      {
                          maxX[now] = 0;
                          return;
                      }
                      int mid = (l + r) / 2;
                      build(now * 2, l, mid);
                      build(now * 2 + 1, mid + 1, r);
                      up(now);
                  }
                  void add(int now, int l, int r, int x, int y, int z)
                  {
                      if (x <= l && r <= y)
                      {
                          lazy[now] = lazy[now] + z;
                          maxX[now] = maxX[now] + z;
                          return;
                      }
                      down(now, l, r);
                      int mid = (l + r) / 2;
                      if (x <= mid)
                          add(now * 2, l, mid, x, y, z);
                      if (y >= mid + 1)
                          add(now * 2 + 1, mid + 1, r, x, y, z);
                      up(now);
                  }
                  int query(int now, int l, int r, int x, int y)
                  {
                      if (x <= l && r <= y)
                          return maxX[now];
                      down(now, l, r);
                      int mid = (l + r) / 2;
                      int res = 0;
                      if (x <= mid)
                          res = max(res, query(now * 2, l, mid, x, y));
                      if (y >= mid + 1)
                          res = max(res, query(now * 2 + 1, mid + 1, r, x, y));
                      return res;
                  }
              } tree;
              int main()
              {
                  ios::sync_with_stdio(false);
                  cin.tie(0);
                  cin >> n >> m;
                  for (int i = 1; i <= n; i++)
                  {
                      cin >> a[i].l >> a[i].r;
                      a[i].len = a[i].r - a[i].l + 1;
                      temp.push_back(a[i].l);
                      temp.push_back(a[i].r);
                  }
                  sort(temp.begin(), temp.end());
                  for (int i = 1; i <= n; i++)
                  {
                      a[i].l = lower_bound(temp.begin(), temp.end(), a[i].l) - temp.begin() + 1;
                      a[i].r = lower_bound(temp.begin(), temp.end(), a[i].r) - temp.begin() + 1;
                  }
                  sort(a + 1, a + n + 1, cmp);
                  int nn = n;
                  n = 2 * n;
                  // 线段:a[1]~a[nn]
                  // 端点:1~n
                  // 线段树维护:每个端点被覆盖的次数
                  tree.build(1, 1, n); // 初始每个端点被覆盖的次数都是 0
                  // 使用 a[p]~a[q] 这些线段
                  // 可以使得被覆盖次数最多的那个点,覆盖的次数达到m
                  // 并且 a[p]~a[q-1] 不行
                  int ans = -1;
                  for (int p = 1, q = 0; p <= nn;)
                  {
                      // 找到q
                      while (q < nn && tree.query(1, 1, n, 1, n) < m)
                      {
                          // 加入一条新线段
                          q++;
                          tree.add(1, 1, n, a[q].l, a[q].r, 1);
                      }
                      if (tree.query(1, 1, n, 1, n) != m)
                          break;
                      // a[p]~a[q] 这些线段做到了!!!!
                      if (ans == -1 || a[q].len - a[p].len < ans)
                          ans = a[q].len - a[p].len;
                      // p++
                      tree.add(1, 1, n, a[p].l, a[p].r, -1);
                      p++;
                  }
                  cout << ans << "\n";
                  return 0;
              }
              
              
              • 2
                @ 2023-1-30 15:58:55

                中位数

                对顶堆写法

                #include <bits/stdc++.h>
                using namespace std;
                const int MAXN = 1000000;
                int n;
                int a[MAXN + 5];
                // ql(大的优先) < qr(小的优先)
                priority_queue<int> ql;
                priority_queue<int> qr;
                int main()
                {
                    ios::sync_with_stdio(false);
                    cin.tie(0);
                    cin >> n;
                    for (int i = 1; i <= n; i++)
                        cin >> a[i];
                    if (n % 2 == 0)
                        n--;
                    ql.push(a[1]);
                    cout << ql.top() << "\n";
                    for (int i = 2; i <= n; i += 2)
                    {
                        // 放入a[i],a[i+1]
                        if (a[i] <= ql.top())
                            ql.push(a[i]);
                        else
                            qr.push(-a[i]);
                        if (a[i + 1] <= ql.top())
                            ql.push(a[i + 1]);
                        else
                            qr.push(-a[i + 1]);
                        // 保证左边比右边多
                        if (ql.size() < qr.size())
                        {
                            ql.push(-qr.top());
                            qr.pop();
                        }
                        // 保证数量相差1
                        while (ql.size() - qr.size() > 1)
                        {
                            qr.push(-ql.top());
                            ql.pop();
                        }
                        cout << ql.top() << "\n";
                    }
                    return 0;
                }
                

                线段树写法

                先离散化 a[],然后用线段树维护每个数出现了几次,update(1,1,n,x,1) 来给 x 的出现次数加 1。然后在线段树上 dfs 找到第 kk 名是谁实现中位数。

                #include <bits/stdc++.h>
                using namespace std;
                const int MAXN = 500000;
                int n, m;
                int a[MAXN + 5];
                int temp[MAXN + 5];
                // 线段树:单点修改、区间查询(区间和)
                int t[4 * MAXN + 5];
                
                // 当前做到了树上的now号节点,当前节点对应的区间为 [l,r]
                // 需要给第x个数加y
                void update(int now, int l, int r, int x, int y)
                {
                    if (l == r)
                    {
                        t[now] += y;
                        return;
                    }
                    int mid = (l + r) / 2;
                    // 左子树 now*2,l,mid
                    // 右子树 now*2+1,mid+1,r
                    if (x <= mid)
                        update(now * 2, l, mid, x, y);
                    else
                        update(now * 2 + 1, mid + 1, r, x, y);
                    t[now] = t[now * 2] + t[now * 2 + 1];
                }
                int query(int now, int l, int r, int x, int y)
                {
                    //[l,r] 是 [x,y] 的子区间
                    if (x <= l && r <= y)
                        return t[now];
                    int mid = (l + r) / 2;
                    // 左子树 now*2,l,mid
                    // 右子树 now*2+1,mid+1,r
                    int res = 0;
                    if (x <= mid)
                        res += query(now * 2, l, mid, x, y);
                    if (y > mid)
                        res += query(now * 2 + 1, mid + 1, r, x, y);
                    return res;
                }
                int dfs(int now, int l, int r, int k)
                {
                    if (l == r)
                        return l;
                    int mid = (l + r) / 2;
                    if (t[now * 2] >= k)
                        return dfs(now * 2, l, mid, k);
                    else
                        return dfs(now * 2 + 1, mid + 1, r, k - t[now * 2]);
                }
                int main()
                {
                    ios::sync_with_stdio(false);
                    cin.tie(0);
                    cin >> n;
                    for (int i = 1; i <= n; i++)
                    {
                        cin >> a[i];
                        temp[i] = a[i];
                    }
                    sort(temp + 1, temp + n + 1);
                    for (int i = 1; i <= n; i++)
                        a[i] = lower_bound(temp + 1, temp + n + 1, a[i]) - temp;
                    // 找中位数
                    update(1, 1, n, a[1], 1);
                    int k = 1;
                    cout << temp[a[1]] << '\n';
                    if (n % 2 == 0)
                        n--;
                    for (int i = 2; i <= n; i += 2)
                    {
                        update(1, 1, n, a[i], 1);
                        update(1, 1, n, a[i + 1], 1);
                        k++;
                        cout << temp[dfs(1, 1, n, k)] << "\n"; // 找到排名为k的数是几
                    }
                    return 0;
                }
                

                树状数组写法

                下面给出的查第 kk 大数的写法是单次 O(log2n)O(\log^2 n) 的,如果想要 O(logn)O(\log n) 实现,可以查看 http://wiki.33dai.cn/ds/fenwick/#tricks

                #include <bits/stdc++.h>
                using namespace std;
                const int MAXN = 500000;
                int n, m;
                int a[MAXN + 5];
                int temp[MAXN + 5];
                // 树状数组
                int t[MAXN + 5];
                int lowbit(int x)
                {
                    return x & (-x);
                }
                // 第x个数加k
                void update(int x, int k)
                {
                    for (int i = x; i <= n; i += lowbit(i))
                        t[i] += k;
                }
                // 返回前x个数的和
                int query(int x)
                {
                    int res = 0;
                    for (int i = x; i >= 1; i -= lowbit(i))
                        res += t[i];
                    return res;
                }
                int main()
                {
                    ios::sync_with_stdio(false);
                    cin.tie(0);
                    cin >> n;
                    for (int i = 1; i <= n; i++)
                    {
                        cin >> a[i];
                        temp[i] = a[i];
                    }
                    sort(temp + 1, temp + n + 1);
                    for (int i = 1; i <= n; i++)
                        a[i] = lower_bound(temp + 1, temp + n + 1, a[i]) - temp;
                    // 找中位数
                    update(a[1], 1);
                    int k = 1;
                    cout << temp[a[1]] << '\n';
                    if (n % 2 == 0)
                        n--;
                    for (int i = 2; i <= n; i += 2)
                    {
                        update(a[i], 1);
                        update(a[i + 1], 1);
                        k++;
                        // 找到排名为k的数是几
                        int l = 1;
                        int r = n;
                        int ans = -1;
                        while (l <= r)
                        {
                            int mid = (l + r) / 2;
                            if (query(mid) >= k)
                            {
                                ans = mid;
                                r = mid - 1;
                            }
                            else
                                l = mid + 1;
                        }
                        cout << temp[ans] << "\n";
                    }
                    return 0;
                }
                
                • 1
                  @ 2023-2-2 9:24:40

                  P4145 上帝造题的七分钟 2 / 花神游历各国

                  #include <bits/stdc++.h>
                  #define int long long
                  using namespace std;
                  const int MAXN = 500000 + 5;
                  int n, m;
                  int a[MAXN];
                  //线段树
                  bool flag[MAXN << 2];
                  int t[MAXN << 2];
                  void up(int now)
                  {
                      t[now] = t[now * 2] + t[now * 2 + 1];
                      flag[now] = flag[now * 2] && flag[now * 2 + 1];
                  }
                  void build(int now, int l, int r)
                  {
                      if (l == r)
                      {
                          t[now] = a[l];
                          flag[now] = t[now] == 1 || t[now] == 0;
                          return;
                      }
                      int mid = (l + r) / 2;
                      build(now * 2, l, mid);
                      build(now * 2 + 1, mid + 1, r);
                      up(now);
                  }
                  void update(int now, int l, int r, int x, int y)
                  {
                      if (flag[now])
                          return;
                      if (l == r)
                      {
                          t[now] = sqrt(t[now]);
                          flag[now] = t[now] == 1 || t[now] == 0;
                          return;
                      }
                      int mid = (l + r) / 2;
                      if (x <= mid)
                          update(now * 2, l, mid, x, y);
                      if (y > mid)
                          update(now * 2 + 1, mid + 1, r, x, y);
                      up(now);
                  }
                  int query(int now, int l, int r, int x, int y)
                  {
                      if (x <= l && r <= y)
                          return t[now];
                      int res = 0;
                      int mid = (l + r) / 2;
                      if (x <= mid)
                          res += query(now * 2, l, mid, x, y);
                      if (y > mid)
                          res += query(now * 2 + 1, mid + 1, r, x, y);
                      return res;
                  }
                  signed main()
                  {
                      ios::sync_with_stdio(false);
                      cin.tie(0);
                      cin >> n;
                      for (int i = 1; i <= n; i++)
                          cin >> a[i];
                      build(1, 1, n);
                      cin >> m;
                      while (m--)
                      {
                          int op, l, r;
                          cin >> op >> l >> r;
                          if (l > r)
                              swap(l, r);
                          if (op == 0)
                              update(1, 1, n, l, r);
                          else
                              cout << query(1, 1, n, l, r) << "\n";
                      }
                      return 0;
                  }
                  
                  • 1
                    @ 2023-2-1 14:33:46

                    HH的项链

                    #include <bits/stdc++.h>
                    #define int long long
                    using namespace std;
                    const int MAXN = 1000000;
                    const int MAXM = 1000000;
                    const int MAXAI = 1000000;
                    int n, m;
                    int a[MAXN + 5];
                    // 存每个位置为右端点的询问<询问的左端点,询问的编号>
                    vector<pair<int, int>> q[MAXN + 5];
                    int ans[MAXM + 5];
                    // pos[i]:i这个种类最新出现的位置
                    int pos[MAXAI + 5];
                    // 树状数组
                    int t[MAXN + 5], treeN;
                    int lowbit(int x)
                    {
                        return x & (-x);
                    }
                    // 第x个数加k
                    void update(int x, int k)
                    {
                        for (int i = x; i <= treeN; i += lowbit(i))
                            t[i] += k;
                    }
                    // 返回前x个数的和
                    int query(int x)
                    {
                        int res = 0;
                        for (int i = x; i >= 1; i -= lowbit(i))
                            res += t[i];
                        return res;
                    }
                    signed main()
                    {
                        ios::sync_with_stdio(false);
                        cin.tie(0);
                        cin >> n;
                        for (int i = 1; i <= n; i++)
                        {
                            cin >> a[i];
                            pos[a[i]] = -1;
                        }
                        cin >> m;
                        for (int i = 1; i <= m; i++)
                        {
                            int l, r;
                            cin >> l >> r;
                            ans[i] = 0;
                            q[r].push_back(make_pair(l, i));
                        }
                        treeN = n;
                        for (int r = 1; r <= n; r++)
                        {
                            if (pos[a[r]] != -1)
                                update(pos[a[r]], -1);
                            pos[a[r]] = r;
                            update(r, 1);
                            for (int i = 0; i < q[r].size(); i++)
                            {
                                int l = q[r][i].first;
                                int id = q[r][i].second;
                                ans[id] = query(r) - query(l - 1);
                            }
                        }
                        for (int i = 1; i <= m; i++)
                            cout << ans[i] << "\n";
                        return 0;
                    }
                    
                    • 1
                      @ 2023-2-1 11:26:21

                      园丁的烦恼

                      #include <bits/stdc++.h>
                      #define int long long
                      using namespace std;
                      const int MAXN = 500000;
                      const int MAXM = 500000;
                      int n, m;
                      int ans[MAXM + 5]; // 第i个矩形的答案
                      struct OP
                      {
                          // op==0:加入一个树 (x,y)
                          // op>0: 需要查询 (1,1)~(x,y) 有多少树,把答案乘w后加入ans[op]
                          int op, x, y, w;
                      };
                      bool operator<(const OP &a, const OP &b)
                      {
                          if (a.x != b.x)
                              return a.x < b.x;
                          if (a.y != b.y)
                              return a.y < b.y;
                          return a.op < b.op;//优先加树再询问
                      }
                      vector<OP> o;
                      // 离散化y的辅助数组
                      vector<int> temp;
                      // 树状数组
                      int t[MAXN + MAXM * 4 + 5], treeN;
                      int lowbit(int x)
                      {
                          return x & (-x);
                      }
                      // 第x个数加k
                      void update(int x, int k)
                      {
                          for (int i = x; i <= treeN; i += lowbit(i))
                              t[i] += k;
                      }
                      // 返回前x个数的和
                      int query(int x)
                      {
                          int res = 0;
                          for (int i = x; i >= 1; i -= lowbit(i))
                              res += t[i];
                          return res;
                      }
                      signed main()
                      {
                          ios::sync_with_stdio(false);
                          cin.tie(0);
                          cin >> n >> m;
                          for (int i = 1; i <= n; i++)
                          {
                              int x, y;
                              cin >> x >> y;
                              x++, y++;
                              o.push_back((OP){0, x, y, 0});
                              temp.push_back(y);
                          }
                          for (int i = 1; i <= m; i++)
                          {
                              ans[i] = 0;
                              int x, y, xx, yy;
                              cin >> x >> y >> xx >> yy;
                              x++, y++, xx++, yy++;
                              o.push_back((OP){i, xx, yy, 1});
                              o.push_back((OP){i, x - 1, yy, -1});
                              o.push_back((OP){i, xx, y - 1, -1});
                              o.push_back((OP){i, x - 1, y - 1, 1});
                              temp.push_back(yy);
                              temp.push_back(y - 1);
                          }
                      
                          // 对y离散化
                          sort(temp.begin(), temp.end());
                          treeN = 0;
                          for (int i = 0; i < o.size(); i++)
                          {
                              o[i].y = lower_bound(temp.begin(), temp.end(), o[i].y) - temp.begin();
                              // 让y离散化后从1开始
                              o[i].y += 1;
                              treeN = max(treeN, o[i].y);
                          }
                          // 按x坐标排序所有操作,然后依次处理
                          sort(o.begin(), o.end());
                          for (int i = 0; i < o.size(); i++)
                          {
                              //cout << o[i].op << " " << o[i].x << " " << o[i].y << " " << o[i].w << ": ";
                              if (o[i].op == 0)
                              {
                                  update(o[i].y, 1);
                                  //cout << "add (" << o[i].x << "," << o[i].y << ")\n";
                              }
                              else
                              {
                                  ans[o[i].op] += o[i].w * (query(o[i].y));
                                  //cout << "ans[" << o[i].op << "]+=" << o[i].w << "*" << query(o[i].y) << "\n";
                              }
                          }
                          for (int i = 1; i <= m; i++)
                              cout << ans[i] << "\n";
                          return 0;
                      }
                      
                      • 1
                        @ 2023-1-31 14:22:23

                        扫描线

                        #include <bits/stdc++.h>
                        #define int long long
                        using namespace std;
                        const int MAXN = 100000 + 5;
                        int n;
                        struct SQ
                        {
                            int x, y, xx, yy;
                        };
                        struct Seg
                        {
                            int x, l, r, t;
                        };
                        bool cmp(Seg a, Seg b)
                        {
                            return a.x < b.x;
                        }
                        SQ a[MAXN];
                        int vtot;
                        int v[MAXN * 2];
                        int btot;
                        Seg b[MAXN * 2];
                        struct SegTree
                        {
                            int sum[8 * MAXN], cnt[8 * MAXN];
                            void up(int now, int l, int r)
                            {
                                if (cnt[now])
                                {
                                    sum[now] = v[r + 1] - v[l];
                                }
                                else if (l == r)
                                    sum[now] = 0;
                                else
                                    sum[now] = sum[now * 2] + sum[now * 2 + 1];
                            }
                            void add(int now, int l, int r, int x, int y, int z)
                            {
                                if (x <= l && r <= y)
                                {
                                    cnt[now] += z;
                                    up(now, l, r);
                                    return;
                                }
                                int mid = (l + r) / 2;
                                if (x <= mid)
                                    add(now * 2, l, mid, x, y, z);
                                if (y >= mid + 1)
                                    add(now * 2 + 1, mid + 1, r, x, y, z);
                                up(now, l, r);
                            }
                        } tree;
                        signed main()
                        {
                            ios::sync_with_stdio(false);
                            cin.tie(0);
                            cin >> n;
                            for (int i = 1; i <= n; i++)
                            {
                                cin >> a[i].x >> a[i].y >> a[i].xx >> a[i].yy;
                                v[++vtot] = a[i].y;
                                v[++vtot] = a[i].yy;
                            }
                            sort(v + 1, v + vtot + 1);
                            vtot = unique(v + 1, v + vtot + 1) - v - 1;
                            for (int i = 1; i <= n; i++)
                            {
                                a[i].y = lower_bound(v + 1, v + vtot + 1, a[i].y) - v;
                                a[i].yy = lower_bound(v + 1, v + vtot + 1, a[i].yy) - v;
                                b[++btot] = (Seg){a[i].x, a[i].y, a[i].yy, 1};
                                b[++btot] = (Seg){a[i].xx, a[i].y, a[i].yy, -1};
                            }
                            sort(b + 1, b + 2 * n + 1, cmp);
                            int ans = 0;
                            for (int i = 1; i <= 2 * n; i++)
                            {
                                if (i > 1)
                                    ans += tree.sum[1] * (b[i].x - b[i - 1].x);
                                tree.add(1, 1, vtot, b[i].l, b[i].r - 1, b[i].t);
                            }
                            cout << ans << endl;
                            return 0;
                        }
                        
                        • 1
                          @ 2023-1-31 14:17:43

                          最大数

                          使用封装了的线段树完成的例子

                          #include <bits/stdc++.h>
                          using namespace std;
                          const int MAXN = 200000 + 5;
                          int D;
                          struct SegTree
                          {
                              int sum[MAXN * 4], maxx[MAXN * 4];
                              void build(int o, int l, int r)
                              {
                                  if (l == r)
                                  {
                                      sum[o] = maxx[o] = 0;
                                      return;
                                  }
                                  int mid = (l + r) >> 1;
                                  build(o * 2, l, mid);
                                  build(o * 2 + 1, mid + 1, r);
                                  sum[o] = sum[o * 2] + sum[o * 2 + 1];
                                  maxx[o] = max(maxx[o * 2], maxx[o * 2 + 1]);
                              }
                              int query_max(int o, int l, int r, int ql, int qr)
                              {
                                  if (l > qr || r < ql)
                                      return -1;
                                  if (ql <= l && r <= qr)
                                      return maxx[o];
                                  int mid = (l + r) >> 1;
                                  return max(query_max(o * 2, l, mid, ql, qr), query_max(o * 2 + 1, mid + 1, r, ql, qr));
                              }
                              int query_sum(int o, int l, int r, int ql, int qr)
                              {
                                  if (l > qr || r < ql)
                                      return 0;
                                  if (ql <= l && r <= qr)
                                      return sum[o];
                                  int mid = (l + r) >> 1;
                                  return query_sum(o * 2, l, mid, ql, qr) + query_sum(o * 2 + 1, mid + 1, r, ql, qr);
                              }
                              void update(int o, int l, int r, int x, int t)
                              {
                                  if (l == r)
                                  {
                                      maxx[o] = sum[o] = t;
                                      return;
                                  }
                                  int mid = (l + r) >> 1;
                                  if (x <= mid)
                                      update(o * 2, l, mid, x, t); // 左右分别更新
                                  else
                                      update(o * 2 + 1, mid + 1, r, x, t);
                                  sum[o] = sum[o * 2] + sum[o * 2 + 1];
                                  maxx[o] = max(maxx[o * 2], maxx[o * 2 + 1]);
                              }
                          } st;
                          int m, cnt, t, n;
                          int a[MAXN];
                          int main()
                          {
                              ios::sync_with_stdio(false);
                              cin.tie(0);
                              cin >> m >> D;
                              n = m;
                              st.build(1, 1, n);
                              cnt = t = 0;
                              while (m--)
                              {
                                  char op;
                                  int x;
                                  cin >> op >> x;
                                  if (op == 'A')
                                  {
                                      cnt++;
                                      st.update(1, 1, n, cnt, (t + x) % D);
                                  }
                                  else if (op == 'Q')
                                  {
                                      t = st.query_max(1, 1, n, cnt - x + 1, cnt);
                                      cout << t << "\n";
                                  }
                              }
                              return 0;
                          }
                          
                          • 1
                            @ 2023-1-30 15:58:02

                            P1966 [NOIP2013 提高组] 火柴排队

                            离散化+归并排序求逆序对的代码

                            #include <bits/stdc++.h>
                            using namespace std;
                            const int MODNUM = 100000000 - 3;
                            int n;
                            int a[100005];
                            int b[100005];
                            int rnk[100005];
                            int temp[100005];
                            long long ans;
                            void mergeSort(int l, int r)
                            {
                                if (l == r)
                                    return;
                                int mid = (l + r) / 2;
                                mergeSort(l, mid);
                                mergeSort(mid + 1, r);
                                int pl = l, pr = mid + 1, pt = l;
                                while (pl <= mid && pr <= r)
                                {
                                    if (rnk[b[pl]] <= rnk[b[pr]])
                                        temp[pt++] = b[pl++];
                                    else
                                    {
                                        ans = (ans + mid - pl + 1) % MODNUM;
                                        temp[pt++] = b[pr++];
                                    }
                                }
                                while (pl <= mid)
                                    temp[pt++] = b[pl++];
                                while (pr <= r)
                                    temp[pt++] = b[pr++];
                                for (int i = l; i <= r; i++)
                                    b[i] = temp[i];
                            }
                            int main()
                            {
                                ios::sync_with_stdio(false);
                                cin.tie(0);
                                cin >> n;
                                //输入并离散化 a
                                for (int i = 1; i <= n; i++)
                                {
                                    cin >> a[i];
                                    temp[i] = a[i];
                                }
                                sort(temp + 1, temp + n + 1);
                                for (int i = 1; i <= n; i++)
                                    a[i] = lower_bound(temp + 1, temp + n + 1, a[i]) - temp;
                                //输入并离散化 b
                                for (int i = 1; i <= n; i++)
                                {
                                    cin >> b[i];
                                    temp[i] = b[i];
                                }
                                sort(temp + 1, temp + n + 1);
                                for (int i = 1; i <= n; i++)
                                    b[i] = lower_bound(temp + 1, temp + n + 1, b[i]) - temp;
                                //求 a 数组中每个数的排名 rnk
                                //rnk[i] 表示 i 在 a 数组中排第几
                                for (int i = 1; i <= n; i++)
                                    rnk[a[i]] = i;
                                //以 a 对应排名算逆序对
                                ans = 0;
                                mergeSort(1, n);
                                cout << ans << '\n';
                                return 0;
                            }
                            

                            离散化+树状数组求逆序对

                            #include <bits/stdc++.h>
                            using namespace std;
                            const int MODNUM = 100000000 - 3;
                            int n;
                            int a[100005];
                            int b[100005];
                            int rnk[100005];
                            int temp[100005];
                            // 树状数组,统计每个数出现了几次
                            int t[100005];
                            int lowbit(int x)
                            {
                                return x & (-x);
                            }
                            // 第x个数加k
                            void update(int x, int k)
                            {
                                for (int i = x; i <= n; i += lowbit(i))
                                    t[i] += k;
                            }
                            // 返回前x个数的和
                            int query(int x)
                            {
                                int res = 0;
                                for (int i = x; i >= 1; i -= lowbit(i))
                                    res += t[i];
                                return res;
                            }
                            int main()
                            {
                                ios::sync_with_stdio(false);
                                cin.tie(0);
                                cin >> n;
                                // 输入并离散化 a
                                for (int i = 1; i <= n; i++)
                                {
                                    cin >> a[i];
                                    temp[i] = a[i];
                                }
                                sort(temp + 1, temp + n + 1);
                                for (int i = 1; i <= n; i++)
                                    a[i] = lower_bound(temp + 1, temp + n + 1, a[i]) - temp;
                                // 输入并离散化 b
                                for (int i = 1; i <= n; i++)
                                {
                                    cin >> b[i];
                                    temp[i] = b[i];
                                }
                                sort(temp + 1, temp + n + 1);
                                for (int i = 1; i <= n; i++)
                                    b[i] = lower_bound(temp + 1, temp + n + 1, b[i]) - temp;
                                // 求 a 数组中每个数的排名 rnk
                                // rnk[i] 表示 i 在 a 数组中排第几
                                for (int i = 1; i <= n; i++)
                                    rnk[a[i]] = i;
                                // 把 b[] 的每个数改为它正确的排名
                                for (int i = 1; i <= n; i++)
                                    b[i] = rnk[b[i]];
                                // 求 b[] 的逆序对
                                long long ans = 0;
                                for (int i = 1; i <= n; i++)
                                {
                                    update(b[i], 1);
                                    // 目前一共有i个数,小于等于b[i]的有query(b[i])个
                                    ans = (ans + i - query(b[i])) % MODNUM;
                                }
                                cout << ans << "\n";
                                return 0;
                            }
                            
                            • 1
                              @ 2023-1-30 15:06:53

                              逆序对(树状数组写法)

                              #include <bits/stdc++.h>
                              using namespace std;
                              const int MAXN = 500000;
                              int n;
                              int a[MAXN + 5];
                              int temp[MAXN + 5];
                              // 树状数组,统计每个数出现了几次
                              int t[MAXN + 5];
                              int lowbit(int x)
                              {
                                  return x & (-x);
                              }
                              // 第x个数加k
                              void update(int x, int k)
                              {
                                  for (int i = x; i <= n; i += lowbit(i))
                                      t[i] += k;
                              }
                              // 返回前x个数的和
                              int query(int x)
                              {
                                  int res = 0;
                                  for (int i = x; i >= 1; i -= lowbit(i))
                                      res += t[i];
                                  return res;
                              }
                              int main()
                              {
                                  ios::sync_with_stdio(false);
                                  cin.tie(0);
                                  cin >> n;
                                  for (int i = 1; i <= n; i++)
                                  {
                                      cin >> a[i];
                                      temp[i] = a[i];
                                  }
                                  sort(temp + 1, temp + n + 1);
                                  for (int i = 1; i <= n; i++)
                                      a[i] = lower_bound(temp + 1, temp + n + 1, a[i]) - temp;
                                  long long ans = 0;
                                  for (int i = 1; i <= n; i++)
                                  {
                                      update(a[i], 1);
                                      // 目前一共有i个数,小于等于a[i]的有query(a[i])个
                                      ans += i - query(a[i]);
                                  }
                                  cout << ans << "\n";
                                  return 0;
                              }
                              
                              • 1
                                @ 2023-1-30 10:38:17

                                线段树

                                P3374 【模板】树状数组 1

                                单点修改、区间查询(区间和)

                                #include <bits/stdc++.h>
                                using namespace std;
                                const int MAXN = 500000;
                                int n, m;
                                int a[MAXN + 5];
                                // 线段树:单点修改、区间查询(区间和)
                                int t[4 * MAXN + 5];
                                // 基于a[]建线段树
                                void build(int now, int l, int r)
                                {
                                    if (l == r)
                                    {
                                        t[now] = a[l];
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    build(now * 2, l, mid);
                                    build(now * 2 + 1, mid + 1, r);
                                    t[now] = t[now * 2] + t[now * 2 + 1];
                                }
                                // 当前做到了树上的now号节点,当前节点对应的区间为 [l,r]
                                // 需要给第x个数加y
                                void update(int now, int l, int r, int x, int y)
                                {
                                    if (l == r)
                                    {
                                        t[now] += y;
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    if (x <= mid)
                                        update(now * 2, l, mid, x, y);
                                    else
                                        update(now * 2 + 1, mid + 1, r, x, y);
                                    t[now] = t[now * 2] + t[now * 2 + 1];
                                }
                                int query(int now, int l, int r, int x, int y)
                                {
                                    //[l,r] 是 [x,y] 的子区间
                                    if (x <= l && r <= y)
                                        return t[now];
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    int res = 0;
                                    if (x <= mid)
                                        res += query(now * 2, l, mid, x, y);
                                    if (y > mid)
                                        res += query(now * 2 + 1, mid + 1, r, x, y);
                                    return res;
                                }
                                
                                int main()
                                {
                                    ios::sync_with_stdio(false);
                                    cin.tie(0);
                                    cin >> n >> m;
                                    for (int i = 1; i <= n; i++)
                                    {
                                        cin >> a[i];
                                    }
                                    build(1, 1, n);
                                    while (m--)
                                    {
                                        int op, x, y;
                                        cin >> op;
                                        if (op == 1)
                                        {
                                            cin >> x >> y; // a[x]+=y
                                            update(1, 1, n, x, y);
                                        }
                                        else
                                        {
                                            cin >> x >> y; // cout sum(a[x]~a[y])
                                            cout << query(1, 1, n, x, y) << "\n";
                                        }
                                    }
                                    return 0;
                                }
                                

                                P3372 【模板】线段树 1

                                【线段树1】

                                区间修改(加法),区间查询(和)

                                #include <bits/stdc++.h>
                                #define int long long
                                using namespace std;
                                const int MAXN = 100000;
                                int n, m;
                                int a[MAXN + 5];
                                // 线段树:单点修改、区间查询(区间和)
                                int t[4 * MAXN + 5], lazy[4 * MAXN + 5];
                                // 基于a[]建线段树
                                void build(int now, int l, int r)
                                {
                                    if (l == r)
                                    {
                                        t[now] = a[l];
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    build(now * 2, l, mid);
                                    build(now * 2 + 1, mid + 1, r);
                                    t[now] = t[now * 2] + t[now * 2 + 1];
                                }
                                void down(int now, int l, int r)
                                {
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    lazy[now * 2] += lazy[now];
                                    t[now * 2] += (mid - l + 1) * lazy[now];
                                    lazy[now * 2 + 1] += lazy[now];
                                    t[now * 2 + 1] += (r - mid) * lazy[now];
                                    lazy[now] = 0;
                                }
                                // 当前做到了树上的now号节点,当前节点对应的区间为 [l,r]
                                // 需要给 [x,y] 这些数都加 z
                                void update(int now, int l, int r, int x, int y, int z)
                                {
                                    if (x <= l && r <= y)
                                    {
                                        t[now] += (r - l + 1) * z;
                                        lazy[now] += z;
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    down(now, l, r); // 把之前欠的结清
                                    if (x <= mid)
                                        update(now * 2, l, mid, x, y, z);
                                    if (y > mid)
                                        update(now * 2 + 1, mid + 1, r, x, y, z);
                                    t[now] = t[now * 2] + t[now * 2 + 1];
                                }
                                int query(int now, int l, int r, int x, int y)
                                {
                                    //[l,r] 是 [x,y] 的子区间
                                    if (x <= l && r <= y)
                                        return t[now];
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    down(now, l, r); // 把之前欠的结清
                                    int res = 0;
                                    if (x <= mid)
                                        res += query(now * 2, l, mid, x, y);
                                    if (y > mid)
                                        res += query(now * 2 + 1, mid + 1, r, x, y);
                                    return res;
                                }
                                
                                signed main()
                                {
                                    ios::sync_with_stdio(false);
                                    cin.tie(0);
                                    cin >> n >> m;
                                    for (int i = 1; i <= n; i++)
                                    {
                                        cin >> a[i];
                                    }
                                    build(1, 1, n);
                                    while (m--)
                                    {
                                        int op, x, y, z;
                                        cin >> op;
                                        if (op == 1)
                                        {
                                            cin >> x >> y >> z;
                                            update(1, 1, n, x, y, z);
                                        }
                                        else
                                        {
                                            cin >> x >> y; // cout sum(a[x]~a[y])
                                            cout << query(1, 1, n, x, y) << "\n";
                                        }
                                    }
                                    return 0;
                                }
                                

                                【标记永久化】

                                #include <bits/stdc++.h>
                                #define int long long
                                using namespace std;
                                const int MAXN = 100000;
                                int n, m;
                                int a[MAXN + 5];
                                // 线段树:单点修改、区间查询(区间和)
                                int t[4 * MAXN + 5], lazy[4 * MAXN + 5];
                                // 基于a[]建线段树
                                void build(int now, int l, int r)
                                {
                                    if (l == r)
                                    {
                                        t[now] = a[l];
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    build(now * 2, l, mid);
                                    build(now * 2 + 1, mid + 1, r);
                                    t[now] = t[now * 2] + t[now * 2 + 1];
                                }
                                // 当前做到了树上的now号节点,当前节点对应的区间为 [l,r]
                                // 需要给 [x,y] 这些数都加 z
                                void update(int now, int l, int r, int x, int y, int z)
                                {
                                    t[now] += (min(y, r) - max(x, l) + 1) * z;
                                    if (x <= l && r <= y)
                                    {
                                        lazy[now] += z;
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    if (x <= mid)
                                        update(now * 2, l, mid, x, y, z);
                                    if (y > mid)
                                        update(now * 2 + 1, mid + 1, r, x, y, z);
                                }
                                int query(int now, int l, int r, int x, int y, int lazySum)
                                {
                                    //[l,r] 是 [x,y] 的子区间
                                    if (x <= l && r <= y)
                                        return t[now] + (r - l + 1) * lazySum;
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    int res = 0;
                                    lazySum += lazy[now];
                                    if (x <= mid)
                                        res += query(now * 2, l, mid, x, y, lazySum);
                                    if (y > mid)
                                        res += query(now * 2 + 1, mid + 1, r, x, y, lazySum);
                                    return res;
                                }
                                
                                signed main()
                                {
                                    ios::sync_with_stdio(false);
                                    cin.tie(0);
                                    cin >> n >> m;
                                    for (int i = 1; i <= n; i++)
                                    {
                                        cin >> a[i];
                                    }
                                    build(1, 1, n);
                                    while (m--)
                                    {
                                        int op, x, y, z;
                                        cin >> op;
                                        if (op == 1)
                                        {
                                            cin >> x >> y >> z;
                                            update(1, 1, n, x, y, z);
                                        }
                                        else
                                        {
                                            cin >> x >> y; // cout sum(a[x]~a[y])
                                            cout << query(1, 1, n, x, y, 0) << "\n";
                                        }
                                    }
                                    return 0;
                                }
                                

                                【标记永久化+动态开点】

                                #include <bits/stdc++.h>
                                #define int long long
                                using namespace std;
                                const int MAXN = 100000;
                                int n, m;
                                int a[MAXN + 5];
                                // 线段树:单点修改、区间查询(区间和)
                                struct Node
                                {
                                    // 左右子节点 lc,rc
                                    // 区间和: sum,加法懒标记:lazy
                                    int lc, rc, sum, lazy;
                                };
                                int tot; // 节点数量
                                Node t[4 * MAXN + 5];
                                // 基于a[] 建线段树,返回根节点
                                int build(int l, int r)
                                {
                                    int now = ++tot;
                                    if (l == r)
                                    {
                                        t[now].sum = a[l];
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    t[now].lc = build(l, mid);
                                    t[now].rc = build(mid + 1, r);
                                    t[now].sum = t[t[now].lc].sum + t[t[now].rc].sum;
                                    return now;
                                }
                                // 当前做到了树上的now号节点,当前节点对应的区间为 [l,r]
                                // 需要给 [x,y] 这些数都加 z
                                void update(int now, int l, int r, int x, int y, int z)
                                {
                                    t[now].sum += (min(y, r) - max(x, l) + 1) * z;
                                    if (x <= l && r <= y)
                                    {
                                        t[now].lazy += z;
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    if (!t[now].lc)
                                        t[now].lc = ++tot;
                                    if (!t[now].rc)
                                        t[now].rc = ++tot;
                                    if (x <= mid)
                                        update(t[now].lc, l, mid, x, y, z);
                                    if (y > mid)
                                        update(t[now].rc, mid + 1, r, x, y, z);
                                }
                                int query(int now, int l, int r, int x, int y, int lazySum)
                                {
                                    //[l,r] 是 [x,y] 的子区间
                                    if (x <= l && r <= y)
                                        return t[now].sum + (r - l + 1) * lazySum;
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    int res = 0;
                                    if (!t[now].lc)
                                        t[now].lc = ++tot;
                                    if (!t[now].rc)
                                        t[now].rc = ++tot;
                                    lazySum += t[now].lazy;
                                    if (x <= mid)
                                        res += query(t[now].lc, l, mid, x, y, lazySum);
                                    if (y > mid)
                                        res += query(t[now].rc, mid + 1, r, x, y, lazySum);
                                    return res;
                                }
                                
                                signed main()
                                {
                                    ios::sync_with_stdio(false);
                                    cin.tie(0);
                                    cin >> n >> m;
                                    for (int i = 1; i <= n; i++)
                                    {
                                        cin >> a[i];
                                    }
                                    int root = build(1, n);
                                    while (m--)
                                    {
                                        int op, x, y, z;
                                        cin >> op;
                                        if (op == 1)
                                        {
                                            cin >> x >> y >> z;
                                            update(root, 1, n, x, y, z);
                                        }
                                        else
                                        {
                                            cin >> x >> y; // cout sum(a[x]~a[y])
                                            cout << query(root, 1, n, x, y, 0) << "\n";
                                        }
                                    }
                                    return 0;
                                }
                                

                                P3373 【模板】线段树 2

                                【线段树2】

                                #include <bits/stdc++.h>
                                #define int long long
                                using namespace std;
                                const int MAXN = 100000;
                                int n, m, p;
                                int a[MAXN + 5];
                                // 线段树:单点修改、区间查询(区间和)
                                int t[4 * MAXN + 5];
                                int lazyAdd[4 * MAXN + 5], lazyMul[4 * MAXN + 5];
                                // 基于a[]建线段树
                                void build(int now, int l, int r)
                                {
                                    lazyAdd[now] = 0;
                                    lazyMul[now] = 1;
                                    if (l == r)
                                    {
                                        t[now] = a[l];
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    build(now * 2, l, mid);
                                    build(now * 2 + 1, mid + 1, r);
                                    t[now] = t[now * 2] + t[now * 2 + 1];
                                    t[now] %= p;
                                }
                                void down(int now, int l, int r)
                                {
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    int add = lazyAdd[now];
                                    int mul = lazyMul[now];
                                
                                    lazyMul[now * 2] *= mul;
                                    lazyMul[now * 2] %= p;
                                    lazyAdd[now * 2] *= mul;
                                    lazyAdd[now * 2] %= p;
                                    t[now * 2] *= mul;
                                    t[now * 2] %= p;
                                    lazyAdd[now * 2] += add;
                                    lazyAdd[now * 2] %= p;
                                    t[now * 2] += (mid - l + 1) * add;
                                    t[now * 2] %= p;
                                
                                    lazyMul[now * 2 + 1] *= mul;
                                    lazyMul[now * 2 + 1] %= p;
                                    lazyAdd[now * 2 + 1] *= mul;
                                    lazyAdd[now * 2 + 1] %= p;
                                    t[now * 2 + 1] *= mul;
                                    t[now * 2 + 1] %= p;
                                    lazyAdd[now * 2 + 1] += add;
                                    lazyAdd[now * 2 + 1] %= p;
                                    t[now * 2 + 1] += (r - mid) * add;
                                    t[now * 2 + 1] %= p;
                                
                                    lazyAdd[now] = 0;
                                    lazyMul[now] = 1;
                                }
                                // 当前做到了树上的now号节点,当前节点对应的区间为 [l,r]
                                // 需要给 [x,y] 这些数都加 z
                                void update_add(int now, int l, int r, int x, int y, int z)
                                {
                                    if (x <= l && r <= y)
                                    {
                                        t[now] += (r - l + 1) * z;
                                        t[now] %= p;
                                        lazyAdd[now] += z;
                                        lazyAdd[now] %= p;
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    down(now, l, r); // 把之前欠的结清
                                    if (x <= mid)
                                        update_add(now * 2, l, mid, x, y, z);
                                    if (y > mid)
                                        update_add(now * 2 + 1, mid + 1, r, x, y, z);
                                    t[now] = t[now * 2] + t[now * 2 + 1];
                                    t[now] %= p;
                                }
                                void update_mul(int now, int l, int r, int x, int y, int z)
                                {
                                    if (x <= l && r <= y)
                                    {
                                        t[now] *= z;
                                        t[now] %= p;
                                        lazyMul[now] *= z;
                                        lazyMul[now] %= p;
                                        lazyAdd[now] *= z;
                                        lazyAdd[now] %= p;
                                        return;
                                    }
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    down(now, l, r); // 把之前欠的结清
                                    if (x <= mid)
                                        update_mul(now * 2, l, mid, x, y, z);
                                    if (y > mid)
                                        update_mul(now * 2 + 1, mid + 1, r, x, y, z);
                                    t[now] = t[now * 2] + t[now * 2 + 1];
                                    t[now] %= p;
                                }
                                int query(int now, int l, int r, int x, int y)
                                {
                                    //[l,r] 是 [x,y] 的子区间
                                    if (x <= l && r <= y)
                                        return t[now];
                                    int mid = (l + r) / 2;
                                    // 左子树 now*2,l,mid
                                    // 右子树 now*2+1,mid+1,r
                                    down(now, l, r); // 把之前欠的结清
                                    int res = 0;
                                    if (x <= mid)
                                        res += query(now * 2, l, mid, x, y);
                                    if (y > mid)
                                        res += query(now * 2 + 1, mid + 1, r, x, y);
                                    return res % p;
                                }
                                
                                signed main()
                                {
                                    ios::sync_with_stdio(false);
                                    cin.tie(0);
                                    cin >> n >> m >> p;
                                    for (int i = 1; i <= n; i++)
                                    {
                                        cin >> a[i];
                                    }
                                    build(1, 1, n);
                                    while (m--)
                                    {
                                        int op, x, y, z;
                                        cin >> op;
                                        if (op == 1)
                                        {
                                            cin >> x >> y >> z;
                                            update_mul(1, 1, n, x, y, z);
                                        }
                                        else if (op == 2)
                                        {
                                            cin >> x >> y >> z;
                                            update_add(1, 1, n, x, y, z);
                                        }
                                        else if (op == 3)
                                        {
                                            cin >> x >> y; // cout sum(a[x]~a[y])
                                            cout << query(1, 1, n, x, y) << "\n";
                                        }
                                    }
                                    return 0;
                                }
                                
                                
                                • 1
                                  @ 2023-1-30 9:04:11

                                  树状数组1

                                  #include <bits/stdc++.h>
                                  using namespace std;
                                  const int MAXN = 500000;
                                  int n, m;
                                  int a[MAXN + 5];
                                  int t[MAXN + 5];
                                  int lowbit(int x)
                                  {
                                      return x & (-x);
                                  }
                                  // 第x个数加k
                                  void update(int x, int k)
                                  {
                                      for (int i = x; i <= n; i += lowbit(i))
                                          t[i] += k;
                                  }
                                  // 返回前x个数的和
                                  int query(int x)
                                  {
                                      int res = 0;
                                      for (int i = x; i >= 1; i -= lowbit(i))
                                          res += t[i];
                                      return res;
                                  }
                                  int main()
                                  {
                                      ios::sync_with_stdio(false);
                                      cin.tie(0);
                                      cin >> n >> m;
                                      for (int i = 1; i <= n; i++)
                                      {
                                          cin >> a[i];
                                          update(i, a[i]);
                                      }
                                      while (m--)
                                      {
                                          int op, x, y;
                                          cin >> op;
                                          if (op == 1)
                                          {
                                              cin >> x >> y; // a[x]+=y
                                              update(x, y);
                                          }
                                          else
                                          {
                                              cin >> x >> y; // cout sum(a[x]~a[y])
                                              cout << query(y) - query(x - 1) << "\n";
                                          }
                                      }
                                      return 0;
                                  }
                                  
                                  • 0
                                    @ 2023-2-2 14:34:55

                                    P4137 Rmq Problem / mex - 线段树做法

                                    rt[n] 是一棵权值线段树,用来记录前 n 个数(a[1],a[2],...,a[n])的情况:

                                    • [x,x] 节点记录数字 x 的最后出现的位置。
                                    • [l,r] 节点记录数字 l,l+1,...,r 的最后出现位置的最小值。
                                      • 通过这个就能知道 [l,r] 是否存在 “最后出现位置小于某个数” 的数字。

                                    当询问 L R 到来时,是在问第 L 个数到第 R 个数(a[L],a[L+1],...,a[R])中,最小的没出现过的数字是谁。

                                    rt[R] 中记录了前 R 个数的情况,所有 “没出现在第 L 个数到第 R 个数中” 的数字必然是 “最后出现位置小于 L” 的数字。找到满足这个条件(最后出现位置小于 L )的最小的数字即可。

                                    这是在线的做法,如果把询问离线下来可以不用可持久化线段树处理。

                                    #include <bits/stdc++.h>
                                    using namespace std;
                                    const int MAXN = 2e5 + 10;
                                    // n数组a长度,m询问个数
                                    int n, m, maxai, minai;
                                    // a原数组,root森林里的根
                                    int a[MAXN], root[MAXN];
                                    int tot;
                                    struct Tree
                                    {
                                        // last:
                                        // 单点时:当前点最后一次出现的位置
                                        // 区间时:所有最后一次出现的位置的最小值
                                        int lc, rc, last;
                                    } tree[MAXN * 32];
                                    // 更新,上一棵的roor是pre,当前区间[l,r],把 x 的值改为 y
                                    int update(int pre, int l, int r, int x, int y)
                                    {
                                        int now = ++tot;
                                        if (l == r)
                                        {
                                            tree[now].last = y;
                                            return now;
                                        }
                                        // 更新链
                                        int mid = (l + r) / 2;
                                        if (x > mid)
                                        {
                                            tree[now].lc = tree[pre].lc;
                                            tree[now].rc = update(tree[pre].rc, mid + 1, r, x, y);
                                        }
                                        else
                                        {
                                            tree[now].rc = tree[pre].rc;
                                            tree[now].lc = update(tree[pre].lc, l, mid, x, y);
                                        }
                                        tree[now].last = min(tree[tree[now].lc].last,
                                                             tree[tree[now].rc].last);
                                        return now;
                                    }
                                    // 查询 u 的 [l,r] 区间上第一个last小于x的数
                                    int query(int u, int l, int r, int x)
                                    {
                                        if (l == r)
                                            return l;
                                        if (u == 0)
                                            return l;
                                        // 左边最小的last值
                                        int temp = tree[tree[u].lc].last;
                                        int mid = (l + r) / 2;
                                        if (temp < x)
                                        {
                                            // 左边有小于x的数就去左边找
                                            return query(tree[u].lc, l, mid, x);
                                        }
                                        else
                                        {
                                            // 否则去右边找
                                            return query(tree[u].rc, mid + 1, r, x);
                                        }
                                    }
                                    int main()
                                    {
                                        ios::sync_with_stdio(false);
                                        cin.tie(0);
                                        cin >> n >> m;
                                        maxai = -1;
                                        minai = 0;
                                        for (int i = 1; i <= n; i++)
                                        {
                                            cin >> a[i];
                                            maxai = max(maxai, a[i]);
                                        }
                                        maxai++;
                                        // 建空树,0号节点做一个自循环空树
                                        tree[0].lc = 0;
                                        tree[0].rc = 0;
                                        tree[0].last = 0;
                                        tot = 1;
                                        root[0] = 1;
                                        // 一人一棵权值线段树
                                        for (int i = 1; i <= n; i++)
                                        {
                                            root[i] = update(root[i - 1], minai, maxai, a[i], i);
                                        }
                                        // 处理询问
                                        while (m--)
                                        {
                                            int l, r, k;
                                            cin >> l >> r;
                                            cout << query(root[r], minai, maxai, l) << "\n";
                                        }
                                        return 0;
                                    }
                                    
                                    
                                    • 0
                                      @ 2023-1-30 9:15:06

                                      树状数组2

                                      #include <bits/stdc++.h>
                                      using namespace std;
                                      const int MAXN = 500000;
                                      int n, m;
                                      int a[MAXN + 5];
                                      int t[MAXN + 5];
                                      int lowbit(int x)
                                      {
                                          return x & (-x);
                                      }
                                      // 第x个数加k
                                      void update(int x, int k)
                                      {
                                          for (int i = x; i <= n; i += lowbit(i))
                                              t[i] += k;
                                      }
                                      // 返回前x个数的和
                                      int query(int x)
                                      {
                                          int res = 0;
                                          for (int i = x; i >= 1; i -= lowbit(i))
                                              res += t[i];
                                          return res;
                                      }
                                      int main()
                                      {
                                          ios::sync_with_stdio(false);
                                          cin.tie(0);
                                          cin >> n >> m;
                                          for (int i = 1; i <= n; i++)
                                          {
                                              cin >> a[i];
                                              if (i == 1)
                                                  update(i, a[i]);
                                              else
                                                  update(i, a[i] - a[i - 1]);
                                          }
                                          while (m--)
                                          {
                                              int op, x, y, k;
                                              cin >> op;
                                              if (op == 1)
                                              {
                                                  cin >> x >> y >> k; // a[x]~a[y] +=y
                                                  update(x, k);
                                                  update(y + 1, -k);
                                              }
                                              else
                                              {
                                                  cin >> x; // cout a[x]
                                                  cout<<query(x)<<"\n";
                                              }
                                          }
                                          return 0;
                                      }
                                      
                                      • -7
                                        @ 2023-2-2 8:29:04

                                        P3834 【模板】可持久化线段树 2

                                        不离散化做权值线段树做法

                                        #include <bits/stdc++.h>
                                        using namespace std;
                                        const int MAXN = 2e5 + 10;
                                        // n数组a长度,m询问个数
                                        int n, m, maxai, minai;
                                        // a原数组,root森林里的根
                                        int a[MAXN], root[MAXN];
                                        
                                        int tot;
                                        struct Tree
                                        {
                                            int lc, rc, cnt;
                                        } tree[MAXN * 32];
                                        // 更新,上一棵的roor是pre,当前区间[l,r],要插入x
                                        int update(int pre, int l, int r, int x)
                                        {
                                            int now = ++tot;
                                            // 继承上一棵
                                            tree[now].cnt = tree[pre].cnt + 1;
                                            if (l == r)
                                                return now;
                                            // 更新链
                                            int mid = (l + r) / 2;
                                            if (x > mid)
                                            {
                                                tree[now].lc = tree[pre].lc;
                                                tree[now].rc = update(tree[pre].rc, mid + 1, r, x);
                                            }
                                            else
                                            {
                                                tree[now].rc = tree[pre].rc;
                                                tree[now].lc = update(tree[pre].lc, l, mid, x);
                                            }
                                            return now;
                                        }
                                        // 查询第x小值,[u,v]目标区间,[l,r]当前区间m
                                        int query(int u, int v, int l, int r, int x)
                                        {
                                            if (l == r)
                                                return l;
                                            int temp = tree[tree[v].lc].cnt - tree[tree[u].lc].cnt;
                                            int mid = (l + r) / 2;
                                            if (x <= temp)
                                                return query(tree[u].lc, tree[v].lc, l, mid, x);
                                            else
                                                return query(tree[u].rc, tree[v].rc, mid + 1, r, x - temp);
                                        }
                                        int main()
                                        {
                                            scanf("%d%d", &n, &m);
                                            maxai = -1'000'000'001;
                                            minai = 1'000'000'001;
                                            for (int i = 1; i <= n; i++)
                                            {
                                                scanf("%d", &a[i]);
                                                maxai = max(maxai, a[i]);
                                                minai = min(minai, a[i]);
                                            }
                                            // 建空树,0号节点做一个自循环空树
                                            tree[0].lc = 0;
                                            tree[0].rc = 0;
                                            tree[0].cnt = 0;
                                            tot = 1;
                                            root[0] = 1;
                                            // 一人一棵权值线段树
                                            for (int i = 1; i <= n; i++)
                                                root[i] = update(root[i - 1], minai, maxai, a[i]);
                                            // 处理询问
                                            for (int i = 1; i <= m; i++)
                                            {
                                                int l, r, k;
                                                scanf("%d%d%d", &l, &r, &k);
                                                printf("%d\n", query(root[l - 1], root[r], minai, maxai, k));
                                            }
                                            return 0;
                                        }
                                        

                                        离散化做权值线段树做法

                                        #include <bits/stdc++.h>
                                        using namespace std;
                                        const int MAXN = 2e5 + 10;
                                        //n数组a长度,m询问个数,nn数组t长度,tot点的个数,离散化后的长度
                                        int n, m, nn, tot;
                                        //a原数组->映射关系,t离散后的数,root森林里的根
                                        int a[MAXN], t[MAXN], root[MAXN];
                                        
                                        struct Tree
                                        {
                                        	int l, r, cnt;
                                        } tree[MAXN * 32];
                                        //建树[l,r]
                                        int build(int l,int r){
                                        	int now=++tot;
                                        	int mid=(l+r)/2;
                                        	if(l<r){
                                        		tree[now].l=build(l,mid);
                                        		tree[now].r=build(mid+1,r);
                                        	}
                                        	return now;
                                        }
                                        //更新,上一棵的roor是pre,当前区间[l,r],要插入x
                                        int update(int pre,int l,int r,int x){
                                        	int now=++tot;
                                        	//继承上一棵
                                        	tree[now].cnt=tree[pre].cnt+1;
                                        	tree[now].l=tree[pre].l;
                                        	tree[now].r=tree[pre].r;
                                        	//更新链
                                        	if(l<r){
                                        		int mid=(l+r)/2;
                                        		if(x>mid)	
                                        			tree[now].r=update(tree[pre].r,mid+1,r,x);
                                        		else
                                        			tree[now].l=update(tree[pre].l,l,mid,x);
                                        		
                                        	}
                                        	return now;
                                        }
                                        // 查询第x小值,[u,v]目标区间,[l,r]当前区间m
                                        int query(int u,int v,int l,int r,int x){
                                        	if(l==r) return l;
                                        	int temp=tree[tree[v].l].cnt-tree[tree[u].l].cnt;
                                        	int mid=(l+r)/2;
                                        	if(x<=temp)
                                        		return query(tree[u].l,tree[v].l,l,mid,x);
                                        	else
                                        		return query(tree[u].r,tree[v].r,mid+1,r,x-temp);
                                        }
                                        int main()
                                        {
                                        	scanf("%d%d", &n, &m);
                                        	for (int i = 1; i <= n; i++)
                                        		scanf("%d", &a[i]),t[i] = a[i];
                                        	//离散化
                                        	sort(t + 1, t + n + 1);
                                        	nn = unique(t + 1, t + n + 1) - t - 1;
                                        	for (int i = 1; i <= n; i++)
                                        		a[i] = lower_bound(t + 1, t + nn + 1, a[i]) - t;
                                        	//建空树
                                        	tot=0;
                                        	root[0]=build(1,nn);
                                        	//一人一棵权值线段树
                                        	for(int i=1;i<=n;i++){
                                        		root[i]=update(root[i-1],1,nn,a[i]);
                                        	}
                                        	//处理询问
                                        	for(int i=1;i<=m;i++){
                                        		int l,r,k;
                                        		scanf("%d%d%d",&l,&r,&k);
                                        		printf("%d\n",t[query(root[l-1],root[r],1,nn,k)]);
                                        	}
                                        	return 0;
                                        }
                                        
                                        • 1

                                        信息

                                        ID
                                        1215
                                        时间
                                        1000ms
                                        内存
                                        256MiB
                                        难度
                                        2
                                        标签
                                        递交数
                                        27
                                        已通过
                                        22
                                        上传者