1 条题解
-
0
Bellman-Ford 做法,SPFA 做法见:https://oj.33dai.cn/p/P5960/solution
#include <bits/stdc++.h> using namespace std; const int MAXN = 5000; const int INF = 2147483647; int n, m; int M; // 边的条数 int u[MAXN * 2 + 5], v[MAXN * 2 + 5], w[MAXN * 2 + 5]; int dis[MAXN + 1 + 5]; int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n >> m; M = 0; for (int i = 1; i <= m; i++) { int op, a, b, c; cin >> op; if (op == 1) { cin >> a >> b >> c; // a-b>=c ~ b-a<=-c ++M; u[M] = a, v[M] = b, w[M] = -c; } if (op == 2) { cin >> a >> b >> c; // a-b<=c ++M; u[M] = b, v[M] = a, w[M] = c; } if (op == 3) { cin >> a >> b; // a=b ~ a-b<=0 , b-a<=0 ++M; u[M] = b, v[M] = a, w[M] = 0; u[M] = a, v[M] = b, w[M] = 0; } } // Bellman-Ford for (int i = 1; i <= n; i++) dis[i] = 0; // 超级源点到每个点的距离都是 0 for (int i = 1; i <= n; i++) { bool flag = true; for (int j = 1; j <= M; j++) if (dis[u[j]] + w[j] < dis[v[j]]) { flag = false; dis[v[j]] = dis[u[j]] + w[j]; } if (flag) break; if (i == n && !flag) { cout << "No"; return 0; } } cout << "Yes"; return 0; }
- 1
信息
- ID
- 1789
- 时间
- 1000ms
- 内存
- 128MiB
- 难度
- 4
- 标签
- 递交数
- 61
- 已通过
- 11
- 上传者