#P4264. [USACO18FEB] Teleportation S
[USACO18FEB] Teleportation S
题目描述
One of the farming chores Farmer John dislikes the most is hauling around lots of cow manure. In order to streamline this process, he comes up with a brilliant invention: the manure teleporter! Instead of hauling manure between two points in a cart behind his tractor, he can use the manure teleporter to instantly transport manure from one location to another. Farmer John's farm is built along a single long straight road, so any location on his farm can be described simply using its position along this road (effectively a point on the number line). A teleporter is described by two numbers and , where manure brought to location can be instantly transported to location .
Farmer John decides to build a teleporter with the first endpoint located at ; your task is to help him determine the best choice for the other endpoint . In particular, there are piles of manure on his farm (). The th pile needs to moved from position to position , and Farmer John transports each pile separately from the others. If we let denote the amount of distance FJ drives with manure in his tractor hauling the th pile, then it is possible that if he hauls the th pile directly with the tractor, or that could potentially be less if he uses the teleporter (e.g., by hauling with his tractor from to , then from to ).
Please help FJ determine the minimum possible sum of the 's he can achieve by building the other endpoint of the teleporter in a carefully-chosen optimal position. The same position is used during transport of every pile.
输入格式
The first line of input contains . In the lines that follow, the th line contains and , each an integer in the range . These values are not necessarily all distinct.
输出格式
Print a single number giving the minimum sum of 's FJ can achieve. Note that this number might be too large to fit into a standard 32-bit integer, so you may need to use large integer data types like a "long long" in C/C++. Also you may want to consider whether the answer is necessarily an integer or not...
题目大意
题目描述
Farmer John 最不喜欢的农活之一就是到处搬运牛粪。为了简化这一过程,他发明了一个绝妙的装置:牛粪传送器!与其用拖拉机后面的拖车搬运牛粪,他可以使用牛粪传送器将牛粪从一个位置瞬间传送到另一个位置。
Farmer John 的农场建在一条笔直的长路上,因此农场上的任何位置都可以简单地用其在这条路上的位置来描述(实际上就是数轴上的一个点)。传送器由两个数字 和 描述,其中被带到位置 的牛粪可以瞬间传送到位置 。
Farmer John 决定建造一个传送器,其第一个端点位于 ;你的任务是帮助他确定另一个端点 的最佳选择。特别地,农场上有 堆牛粪()。第 堆牛粪需要从位置 搬运到位置 ,Farmer John 会分别搬运每一堆牛粪。如果我们用 表示 Farmer John 搬运第 堆牛粪时拖拉机行驶的距离,那么如果他直接用拖拉机搬运第 堆牛粪,则 ;如果他使用传送器,则 可能会更小(例如,通过用拖拉机从 运到 ,然后从 运到 )。
请帮助 Farmer John 确定通过将传送器的另一个端点 建在一个精心选择的最优位置,可以实现的最小 总和。搬运每堆牛粪时使用相同的 位置。
输入格式
输入的第一行包含 。接下来的 行中,第 行包含 和 ,每个整数的范围在 之间。这些值不一定全部不同。
输出格式
输出一个数字,表示 Farmer John 可以实现的最小 总和。请注意,这个数字可能超过标准 32 位整数的范围,因此可能需要使用更大的整数类型,例如 C/C++ 中的 long long
。此外,你可能需要考虑答案是否一定是整数……
提示
在这个例子中,通过设置 ,Farmer John 可以实现 、 和 。请注意, 在范围 内的任何值也会产生最优解。
题目来源:Brian Dean
3
-5 -7
-3 10
-2 7
10
提示
In this example, by setting FJ can achieve , , and . Note that any value of in the range would also yield an optimal solution.
Problem credits: Brian Dean