#1271. Remainders Game
Remainders Game
本题没有可用的提交语言。
Description
Today Pari and Arya are playing a game called Remainders.
Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value for any positive integer x?
Note, that means the remainder of x after dividing it by y.
The first line of the input contains two integers n and k (1 ≤ n, k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.
The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).
Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.
Input
The first line of the input contains two integers n and k (1 ≤ n, k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.
The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).
Output
Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.
4 5<br>2 3 5 12<br>
2 7<br>2 3<br>
Yes<br>
No<br>
Note
In the first sample, Arya can understand because 5 is one of the ancient numbers.
In the second sample, Arya can't be sure what is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.